Abstract
We define a bijection between spanning subgraphs and orientations of graphs and explore its enumerative consequences regarding the Tutte polynomial. We obtain unifying bijective proofs for all the evaluations $T_G(i,j),0\leq i,j \leq 2$ of the Tutte polynomial in terms of subgraphs, orientations, outdegree sequences and sandpile configurations. For instance, for any graph $G$, we obtain a bijection between connected subgraphs (counted by $T_G(1,2)$) and root-connected orientations, a bijection between forests (counted by $T_G(2,1)$) and outdegree sequences and bijections between spanning trees (counted by $T_G(1,1)$), root-connected outdegree sequences and recurrent sandpile configurations. All our proofs are based on a single bijection $\Phi$ between the spanning subgraphs and the orientations that we specialize in various ways. The bijection $\Phi$ is closely related to a recent characterization of the Tutte polynomial relying on combinatorial embeddings of graphs, that is, on a choice of cyclic order of the edges around each vertex.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献