Author:
Bender Edward A.,Gao Zhicheng
Abstract
We obtain asymptotic formulas for the number of rooted 2-connected and 3-connected surface maps on an orientable surface of genus $g$ with respect to vertices and edges simultaneously. We also derive the bivariate version of the large face-width result for random 3-connected maps. These results are then used to derive asymptotic formulas for the number of labelled $k$-connected graphs of orientable genus $g$ for $k\le3$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献