The Top-Degree Part in the Matchings-Jack Conjecture
-
Published:2021-05-07
Issue:2
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
In 1996 Goulden and Jackson introduced a family of coefficients $( c_{\pi, \sigma}^{\lambda} ) $ indexed by triples of partitions which arise in the power sum expansion of some Cauchy sum for Jack symmetric functions $(J^{(\alpha )}_\pi )$. The coefficients $ c_{\pi, \sigma}^{\lambda} $ can be viewed as an interpolation between the structure constants of the class algebra and the double coset algebra. Goulden and Jackson suggested that the coefficients $ c_{\pi, \sigma}^{\lambda} $ are polynomials in the variable $\beta := \alpha-1$ with non-negative integer coefficients and that there is a combinatorics of matching hidden behind them. This Matchings-Jack Conjecture remains open. Dołȩga and Féray showed the polynomiality of connection coefficients $c^\lambda_{\pi,\sigma}$ and gave an upper bound on the degrees. We show a dual approach to this problem and investigate Jack characters and their connection coefficients. We give a necessary and sufficient condition for the polynomial $ c_{\pi, \sigma}^{\lambda}$ to achieve this bound. We show that the leading coefficient of $ c_{\pi, \sigma}^{\lambda}$ is a positive integer and we present it in the context of Matchings-Jack Conjecture of Goulden and Jackson.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献