Author:
Diskin Sahar,Krivelevich Michael
Abstract
We consider the performance of the Depth First Search (DFS) algorithm on the random graph $G\left(n,\frac{1+\epsilon}{n}\right)$, $\epsilon>0$ a small constant. Recently, Enriquez, Faraud and Ménard proved that the stack $U$ of the DFS follows a specific scaling limit, reaching the maximal height of $\left(1+o_{\epsilon}(1)\right)\epsilon^2n$. Here we provide a simple analysis for the typical length of a maximum path discovered by the DFS.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献