Author:
Balogh József,Mousset Frank,Skokan Jozef
Abstract
In 1996 Kouider and Lonc proved the following natural generalization of Dirac's Theorem: for any integer $k\geq 2$, if $G$ is an $n$-vertex graph with minimum degree at least $n/k$, then there are $k-1$ cycles in $G$ that together cover all the vertices.This is tight in the sense that there are $n$-vertex graphs that have minimum degree $n/k-1$ and that do not contain $k-1$ cycles with this property. A concrete example is given by $I_{n,k} = K_n\setminus K_{(k-1)n/k+1}$ (an edge-maximal graph on $n$ vertices with an independent set of size $(k-1)n/k+1$). This graph has minimum degree $n/k-1$ and cannot be covered with fewer than $k$ cycles. More generally, given positive integers $k_1,\dotsc,k_r$ summing to $k$, the disjoint union $I_{k_1n/k,k_1}+ \dotsb + I_{k_rn/k,k_r}$ is an $n$-vertex graph with the same properties.In this paper, we show that there are no extremal examples that differ substantially from the ones given by this construction. More precisely, we obtain the following stability result: if a graph $G$ has $n$ vertices and minimum degree nearly $n/k$, then it either contains $k-1$ cycles covering all vertices, or else it must be close (in ‘edit distance') to a subgraph of $I_{k_1n/k,k_1}+ \dotsb + I_{k_rn/k,k_r}$, for some sequence $k_1,\dotsc,k_r$ of positive integers that sum to $k$.Our proof uses Szemerédi's Regularity Lemma and the related machinery.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The square of a Hamilton cycle in randomly perturbed graphs;Random Structures & Algorithms;2024-04-16
2. Cycle Partition of Dense Regular Digraphs and Oriented Graphs;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023
3. Triangles in randomly perturbed graphs;Combinatorics, Probability and Computing;2022-07-05
4. Cycle factors in randomly perturbed graphs;Procedia Computer Science;2021
5. Cycle partitions of regular graphs;Combinatorics, Probability and Computing;2020-12-18