Stability for Vertex Cycle Covers

Author:

Balogh József,Mousset Frank,Skokan Jozef

Abstract

In 1996 Kouider and Lonc proved the following natural generalization of Dirac's Theorem: for any integer $k\geq 2$, if $G$ is an $n$-vertex graph with minimum degree at least $n/k$, then there are $k-1$ cycles in $G$ that together cover all the vertices.This is tight in the sense that there are $n$-vertex graphs that have minimum degree $n/k-1$ and that do not contain $k-1$ cycles with this property. A concrete example is given by $I_{n,k} = K_n\setminus K_{(k-1)n/k+1}$ (an edge-maximal graph on $n$ vertices with an independent set of size $(k-1)n/k+1$). This graph has minimum degree $n/k-1$ and cannot be covered with fewer than $k$ cycles. More generally, given positive integers $k_1,\dotsc,k_r$ summing to $k$, the disjoint union $I_{k_1n/k,k_1}+ \dotsb + I_{k_rn/k,k_r}$ is an $n$-vertex graph with the same properties.In this paper, we show that there are no extremal examples that differ substantially from the ones given by this construction. More precisely, we obtain the following stability result: if a graph $G$ has $n$ vertices and minimum degree nearly $n/k$, then it either contains $k-1$ cycles covering all vertices, or else it must be close (in ‘edit distance') to a subgraph of $I_{k_1n/k,k_1}+ \dotsb + I_{k_rn/k,k_r}$, for some sequence $k_1,\dotsc,k_r$ of positive integers that sum to $k$.Our proof uses Szemerédi's Regularity Lemma and the related machinery.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The square of a Hamilton cycle in randomly perturbed graphs;Random Structures & Algorithms;2024-04-16

2. Cycle Partition of Dense Regular Digraphs and Oriented Graphs;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

3. Triangles in randomly perturbed graphs;Combinatorics, Probability and Computing;2022-07-05

4. Cycle factors in randomly perturbed graphs;Procedia Computer Science;2021

5. Cycle partitions of regular graphs;Combinatorics, Probability and Computing;2020-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3