Author:
Anstee Richard,Ferguson Ron,Sali Attila
Abstract
The present paper continues the work begun by Anstee, Griggs and Sali on small forbidden configurations. In the notation of (0,1)-matrices, we consider a (0,1)-matrix $F$ (the forbidden configuration), an $m\times n$ (0,1)-matrix $A$ with no repeated columns which has no submatrix which is a row and column permutation of $F$, and seek bounds on $n$ in terms of $m$ and $F$. We give new exact bounds for some $2\times l$ forbidden configurations and some asymptotically exact bounds for some other $2\times l$ forbidden configurations. We frequently employ graph theory and in one case develop a new vertex ordering for directed graphs that generalizes Rédei's Theorem for Tournaments. One can now imagine that exact bounds could be available for all $2\times l$ forbidden configurations. Some progress is reported for $3\times l$ forbidden configurations. These bounds are improvements of the general bounds obtained by Sauer, Perles and Shelah, Vapnik and Chervonenkis.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献