Author:
Andrade Carrera Hugo,Sinche Maita Soraya,Hidalgo Lascano Pablo
Abstract
Since Covid-19 appeared, the world has entered into a new stage, in which everybody is trying to mitigate the effects of the virus. The mandatory use of face masks in public places and when maintaining contact with people outside the family circle is one of mandatory measures that many countries have implemented, such as Ecuador, thus, the purpose of this article is to develop a convolutional neural network model using TensorFlow based on MobileNetV2, that allows to perform mask detection in real time video with the key feature of determining if the person is using the face mask properly or if it is not wearing a mask, in order to use the model with OpenCV and a pretrained neural network that detects faces. In addition, the performance metrics of the neural network are analyzed, including precision, accuracy, recall and the F1 score. All performance metrics consider the number of epochs for the training process, obtaining as a result a model that classifies between three groups: faces without face mask, faces wearing a face mask improperly and faces wearing a mask properly. with a great performance in all metrics; The results show values greater than 85% for precision, recall and F1 score, and accuracy values between 93% for 5 epochs and 95% for 25 epochs.
Publisher
Revista de Investigacion en Tecnologias de la Informacion
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献