Author:
Sarma Dhiman, ,Mittra Tanni,Hoq Muntasir,Haque Promila,Quasem Farah,Alam Mohammad Jahangir,Bhuiya Md. Abdul Motaleb,Hossain Sohrab, , , , , , ,
Abstract
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV). In 2015, WHO reports that 71 million people were living with HCV, and 1.34 million died. In 2017, 13.1 million infected people knew their diagnosis and around 5 million patients were treated. HCV can cause acute and chronic hepatitis, where 20% of chronic hepatitis progresses to final-stage chronic liver cancer. Currently, no vaccine of HCV exists, and no effective treatments are available for demolishing the progression of hepatitis C. So spotting the stages of the disease is essential for diagnostic and therapeutic management of infected patients. This paper attempts to detect stages of hepatitis C virus so that further diagnosis and medication of hepatitis patients can be prescribed. It uses a supervised artificial neural network to make a prediction. Evaluation of results is done by cross-validation using the holdout method. Hepatitis C Egyptian-patients' dataset from UCI Machine Learning Repository is used for feeding the algorithms. The research succeeds to detect the hepatitis C stages and achieves an accuracy of 97%.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献