Farmers in the Marsh: Lessons from History and Case Studies for the Future by Susan C. Adamowicz and others

Author:

Adamowicz Susan

Abstract

Salt marshes across coastal New England are undergoing rapid change characterized by increased areas of saturation resulting in shifts in vegetation communities, large areas of vegetation dieback, and increases in shallow standing water. In the early 2000s, gently sloped leading edges of salt marshes (“low marsh” dominated by Spartina alterniflora and flooded daily) began to be lost from Maine to Connecticut. More marsh edges are now “cliff-faced” with steep, vertical edges often characterized by peat calving. In many places, the “high marsh” (the irregularly flooded marsh platform normally dominated by Spartina patens, Distichlis spicata, and Juncus gerardii, as well as forbs) has been overtaken by short- (<0.10 m) to intermediate- (>0.60m – 1.0 m) form S. alterniflora, bare patches, and large areas of shallow standing water. The marsh platform between the ubiquitous ditches has subsided. In extreme cases, the marsh has ‘collapsed’ and now holds shallow water in a mega-pool with the only vegetation occurring along the ditch margins, in a “waffle-maple syrup” pattern. Elsewhere, the mega-pool becomes large and amorphous or interlocking in a jig-saw puzzle fashion suggestive of northern patterned fens with strings and flarks. While a few researchers have documented traits and trajectories of “natural” pools, the relatively sudden appearance and geographic extent of these changes suggests large-scale drivers. At the same time, research into historical salt marsh alterations for farming purposes dating as far back as the 1600s with large corporate works in the 1800s, has led this team to realize that remnant infrastructure from past agriculture coupled with accelerated sea-level rise is driving wide-scale salt marsh degradation. Tidal marsh obligate birds, such as the saltmarsh sparrow, which nest in narrow portions of “high marsh”, are at increasing peril from the loss of marsh elevation due to subsidence trajectories exacerbated by a heretofore largely unrecognized historical agricultural infrastructure. With species extinction modelled at 2050 and a metonic cycle shifting toward increasing tide ranges in 2024, it is imperative to halt subsidence trajectories by re-balancing marsh hydrology to optimize vegetation, accretion, and elevation gain. Obligate wildlife species and their habitats can then be supported over the long-term through the development of strategic management plans for each salt marsh system. Following a review of the historical literature, which documents the breadth of standardized farming practices, we identify these features on several sites, then present a four-step process to restore hydrologic function using innovative restoration practices at two case studies located in Rhode Island and Massachusetts, USA.

Publisher

Society of Wetland Scientists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3