The potential role of the prolyl isomerase Pin1 during blastocyst implantation and uterine decidualization in mice

Author:

Xu Rui12,Li Yunzhi1,Li Shupei1,Wang Ning1,Lin Shuai3,Du Tianxi4,Wang Fengsong1,Zhang Xiuhong1ORCID

Affiliation:

1. School of Life Science Anhui Medical University Hefei China

2. Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei China

3. School of Basic Medical Sciences Anhui Medical University Hefei China

4. Laboratory Animal Center Anhui Medical University Hefei Anhui China

Abstract

AbstractDuring early pregnancy in mice, the establishment of uterine receptivity and endometrial decidualization require the extensive proliferation and differentiation of endometrial epithelial cells or stromal cells. Pin1 has been suggested to act as a molecular ‘timer’ of the cell cycle and is involved in the regulation of cellular proliferation and differentiation by binding many cell‐cycle regulatory proteins. However, its physiological role during early pregnancy is still not fully understood. Here, we employed immunohistochemistry to determine the spatiotemporal pattern of Pin1 expression during early pregnancy. We found that Pin1 was mainly localized in subluminal stromal cells on day 4, in the decidual zone on days 5 to 8 of pregnancy and in artificial decidualization. Using a uterine stromal cell culture system, we found that progesterone, but not estrogen, induced the expression of Pin1 in a progesterone receptor‐dependent manner. Inhibition of Pin1 in the uterus leads to impaired embryo implantation and decidualization in mice. Notably, a decrease in Pin1 activation affected the functional execution of several implantation‐ or decidualization‐related factors. These findings provide new evidence for a previously unknown function of Pin1 in mediating embryo implantation and decidualization during successful pregnancy establishment and maintenance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3