Targeted inhibition of m6A demethylase FTO by FB23 attenuates allergic inflammation in the airway epithelium

Author:

Lian Zexuan1ORCID,Chen Ruchong1ORCID,Xian Mo1ORCID,Huang Peiying1ORCID,Xu Jiahan1ORCID,Xiao Xiaojun2ORCID,Ning Xiaoping1ORCID,Zhao Jin3ORCID,Xie Jianlei3ORCID,Duan Jielin1ORCID,Li Bizhou1ORCID,Wang Wanjun1ORCID,Shi Xu1ORCID,Wang Xinru1ORCID,Jia Nan1ORCID,Chen Xuepeng4ORCID,Li Jing1ORCID,Yang Zhaowei1ORCID

Affiliation:

1. State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong P.R. China

2. State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology Shenzhen University Shenzhen Guangdong P.R. China

3. State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong P.R. China

4. GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory Guangzhou Medical University Guangzhou P.R. China

Abstract

AbstractEpithelial cells play a crucial role in asthma, contributing to chronic inflammation and airway hyperresponsiveness. m6A modification, which involves key proteins such as the demethylase fat mass and obesity‐associated protein (FTO), is crucial in the regulation of various diseases, including asthma. However, the role of FTO in epithelial cells and the development of asthma remains unclear. In this study, we investigated the demethylase activity of FTO using a small‐molecule inhibitor FB23 in epithelial cells and allergic inflammation in vivo and in vitro. We examined the FTO‐regulated transcriptome‐wide m6A profiling by methylated RNA immunoprecipitation sequencing (MeRIP‐seq) and RNA‐seq under FB23 treatment and allergic inflammation conditions. Immunofluorescence staining was performed to assess the tissue‐specific expression of FTO in asthmatic bronchial mucosa. We demonstrated that FB23 alleviated allergic inflammation in IL‐4/IL‐13‐treated epithelial cells and house dust mite (HDM)‐induced allergic airway inflammation mouse model. The demethylase activity of FTO contributed to the regulation of TNF‐α signaling via NF‐κB and epithelial–mesenchymal transition‐related pathways under allergic inflammation conditions in epithelial cells. FTO was expressed in epithelial, submucosal gland, and smooth muscle cells in human bronchial mucosa. In conclusion, FB23‐induced inhibition of FTO alleviates allergic inflammation in epithelial cells and HDM‐induced mice, potentially through diverse cellular processes and epithelial–mesenchymal transition signaling pathways, suggesting that FTO is a potential therapeutic target in asthma management.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3