Computational structure‐based approach to study chimeric antigens using a new protein scaffold displaying foreign epitopes

Author:

Cappelli Luigia12ORCID,Cinelli Paolo12ORCID,Perrotta Andrea23ORCID,Veggi Daniele2ORCID,Audagnotto Martina2ORCID,Tuscano Giovanna2ORCID,Pansegrau Werner2ORCID,Bartolini Erika2ORCID,Rinaudo Daniela2ORCID,Cozzi Roberta2ORCID

Affiliation:

1. Dipartimento di Farmacia e Biotecnologie ‐ FaBiT University of Bologna Bologna Italy

2. GSK Siena Italy

3. Dipartimento di Scienze della Vita University of Siena Siena Italy

Abstract

AbstractThe identification and recombinant production of functional antigens and/or epitopes of pathogens represent a crucial step for the development of an effective protein‐based vaccine. Many vaccine targets are outer membrane proteins anchored into the lipidic bilayer through an extended hydrophobic portion making their recombinant production challenging. Moreover, only the extracellular loops, and not the hydrophobic regions, are naturally exposed to the immune system. In this work, the Domain 3 (D3) from Group B Streptococcus (GBS) pilus 2a backbone protein has been identified and engineered to be used as a scaffold for the display of extracellular loops of two Neisseria gonorrhoeae membrane proteins (PorB.1b and OpaB). A computational structure‐based approach has been applied to the design of both the scaffold and the model antigens. Once identified the best D3 engineerable site, several different chimeric D3 displaying PorB.1b and OpaB extracellular loops were produced as soluble proteins. Each molecule has been characterized in terms of solubility, stability, and ability to correctly display the foreign epitope. This antigen dissection strategy allowed the identification of most immunogenic extracellular loops of both PorB.1b and OpaB gonococcal antigens. The crystal structure of chimeric D3 displaying PorB.1b immunodominant loop has been obtained confirming that the engineerization did not alter the predicted native structure of this epitope. Taken together, the reported data suggest that D3 is a novel protein scaffold for epitope insertion and display, and a valid alternative to the production of whole membrane protein antigens. Finally, this work describes a generalized computational structure‐based approach for the identification, design, and dissection of epitopes in target antigens through chimeric proteins.

Funder

Università degli Studi di Siena

Università di Bologna

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3