Affiliation:
1. Arkansas Children's Nutrition Center Little Rock Arkansas USA
2. Department of Pediatrics University of Arkansas for Medical Sciences Little Rock Arkansas USA
3. Myeloma Center University of Arkansas for Medical Sciences Little Rock Arkansas USA
Abstract
AbstractOsteoclasts derived from hematopoietic stem cells control bone resorption. Identifying novel molecules that can epigenetically regulate osteoclastogenesis is important for developing novel treatments for osteoporosis and other disorders associated with bone deterioration and promoting healthy bone formation. The polycomb group (PcG) protein enhancer of zeste homolog 2 (Ezh2), a histone lysine methyltransferase, is associated with epigenetic regulation of numerous cellular processes, but its involvement in bone cell development and homeostasis is not yet clear. Here, LysM‐Cre mice were crossed with Ezh2flox/flox mice to delete Ezh2 in myeloid cell lineage mature macrophages. Conditional knockout of Ezh2 (CKO) in myeloid cell line resulted in significant increases in postnatal bone growth in the first 6 months of life for both male and female mice. For female mice, optimal bone mass was seen for mice with Ezh2 deleted in both chromosomes in a pair (f/f Cre+; CKO). For male mice, optimal bone mass was found after deletion of Ezh2 from just one chromosome (f/− Cre+) with no difference in bone phenotype between f/− Cre+ and CKO male mice. In addition to the gender‐specific difference in bone phenotype, Ezh2 CKO mice had significantly less macrophages (CD11b+) present in the bone marrow compared with control mice as well as significantly more mature osteoblasts and bone formation biomarkers present (P1NP, osteocalcin). Inflammatory array for protein lysed from bone tissue revealed deletion of Ezh2 decreased inflammatory milieu in both male and female mice compared with controls. Unexpectedly, myeloid cell deletion of Ezh2 also increased the number of mature osteoblast present in the bone. Deletion of Ezh2 also led to an increase in gene expression of osteoclast‐suppressive genes IRF8, MafB, and Arg1 due to a decrease in the presence of the suppressive H3K27me3 epigenetic mark. These findings suggest that manipulation of Ezh2 expression may be a viable strategy to combat bone resorptive disorders such as osteoporosis or arthritis.
Subject
Genetics,Molecular Biology,Biochemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献