Cholinergic drugs reduce metabolic inflammation and diabetic myocardial injury by regulating the gut bacterial component lipopolysaccharide‐induced ERK/Egr‐1 pathway

Author:

Wu Qing1,Zhao Ming1,Li Dongling1,He Xi1,Zang Weijin1ORCID

Affiliation:

1. Department of Pharmacology, School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi P.R. China

Abstract

AbstractAutonomic imbalance and metabolic inflammation are important pathological processes in diabetic cardiomyopathy. Gut microbiota dysbiosis and increased levels of bacterial component lipopolysaccharide (LPS) are associated with diabetic myocardial injury, but the mechanism by which gut microbes affect metabolic inflammation and cardiac injury remains unclear. We determined whether pyridostigmine (PYR), which inhibits cholinesterase to improve vagal activity, could regulate the disordered gut microbiota and attenuate gut barrier dysfunction, metabolic endotoxemia, and inflammation in diabetes. Db/db mice exhibited high blood glucose levels, insulin resistance, low vagal activity, and diabetic myocardial injury. Db/db mice also exhibited gut microbiota perturbations and subsequent disruption of gut barrier function, resulting in an influx of LPS, metabolic endotoxemia, and inflammation. PYR ameliorated the dysregulated glucose and lipid metabolism, modulated the overall structure of the gut microbiota, selectively enhanced the abundance of anti‐inflammatory bacteria, and reduced the abundance of proinflammatory and potentially pathogenic bacteria in db/db mice. Importantly, PYR enhanced vagal activity, restored gut microbiota homeostasis, and alleviated gut barrier dysfunction. Therefore, the LPS‐induced extracellular signal‐regulated kinase (ERK)/early growth response‐1 (Egr‐1) pathway and consequent metabolic inflammation were inhibited, and eventually, cardiac hypertrophy, fibrosis, oxidative stress, and dysfunction were ameliorated in db/db mice. In vitro cardiomyocyte injury was induced by exposing primary neonatal rat ventricular cardiomyocytes to high glucose (HG) and LPS. In vitro analyses showed that HG + LPS induced ERK1/2 phosphorylation, Egr‐1 expression, inflammation, and cell apoptosis, which were inhibited by acetylcholine (ACh). Alpha 7 nicotinic ACh receptor but not muscarinic 2 ACh receptor plays an important role in ACh‐mediated anti‐inflammatory effects and inhibiting the ERK/Egr‐1 pathway in HG + LPS‐administered neonatal rat ventricular cardiomyocytes. PYR and ACh ameliorated diabetic myocardial injury by inhibiting the LPS‐induced ERK/Egr‐1 pathway and metabolic inflammation. The vagus–gut–heart axis has provided new insights into the complex mechanisms of diabetes and offers novel therapeutic targets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3