ZNF32 prevents the activation of cancer‐associated fibroblasts through negative regulation of TGFB1 transcription in breast cancer

Author:

Li Qin1,Yuan Hang1,Zhao Gang1,Zhang Jie1,Li Siqi1,Gong Di12,Feng Tianyu1,Kou Qiming1,Wang Qijing1,Wang Guanru1,Li Shan1,Li Kai1,Lin Ping1

Affiliation:

1. Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China

2. School of Basic Medical Sciences Chengdu University Chengdu China

Abstract

AbstractBreast cancer is the most frequently diagnosed malignancy and the leading cause of cancer‐related deaths in women worldwide. Cancer‐associated fibroblasts (CAFs) are one of the fundamental cellular components of the tumor microenvironment and play a critical role in the initiation, progression, and therapy resistance of breast cancer. However, the detailed molecular mechanisms of CAFs activation from normal fibroblasts (NFs) are still not well understood. In the present study, we reported that ZNF32 expression in breast cancer cells was negatively correlated with CAF‐related markers (FSP1, α‐SMA, and FAP) in stromal fibroblasts, and loss of ZNF32 promoted the activation of CAFs, as evidenced by the enhanced proliferation and contractility of CAFs. ZNF32 deficiency‐mediated fibroblast activation promoted the growth and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, we demonstrated that ZNF32 inhibited TGFB1 transcription by directly binding to the −1968/−1962 region of the TGFB1 promoter, leading to the prevention of fibroblast activation. Altogether, our findings reveal an important mechanism by which ZNF32 suppression increases the transcription of the TGFB1 gene in breast cancer cells, and subsequently, elevated levels of secretory TGF‐β stimulate NFs transformation into CAFs, which in turn facilitates the malignant progression of breast cancer. Our data implicated ZNF32 as a potential therapeutic strategy against breast cancer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3