A whole blood approach improves speed and accuracy when measuring mitochondrial respiration in intact avian blood cells

Author:

Nord Andreas1ORCID,Chamkha Imen2ORCID,Elmér Eskil2ORCID

Affiliation:

1. Department of Biology, Section for Evolutionary Ecology Lund University Lund Sweden

2. Department of Clinical Sciences, Mitochondrial Medicine Lund University Lund Sweden

Abstract

AbstractUnderstanding mitochondrial biology and pathology is key to understanding the evolution of animal form and function. However, mitochondrial measurement often involves invasive, or even terminal, sampling, which can be difficult to reconcile in wild models or longitudinal studies. Non‐mammal vertebrates contain mitochondria in their red blood cells, which can be exploited for minimally invasive mitochondrial measurement. Several recent bird studies have measured mitochondrial function using isolated blood cells. Isolation adds time in the laboratory and might be associated with physiological complications. We developed and validated a protocol to measure mitochondrial respiration in bird whole blood. Endogenous respiration was comparable between isolated blood cells and whole blood. However, respiration towards oxidative phosphorylation was higher in whole blood, and whole blood mitochondria were better coupled and had higher maximum working capacity. Whole blood measurement was also more reproducible than measurement on isolated cells for all traits considered. Measurements were feasible over a 10‐fold range of sample volumes, although both small and large volumes were associated with changes to respiratory traits. The protocol was compatible with long‐term storage: after 24 h at 5°C without agitation, all respiration traits but maximum working capacity remained unchanged, the latter decreasing by 14%. Our study suggests that whole blood measurement provides faster, more reproducible, and more biologically and physiologically relevant (mitochondrial integrity) assessment of mitochondrial respiration. We recommend future studies to take a whole blood approach unless specific circumstances require the use of isolated blood cells.

Funder

Kungliga Fysiografiska Sällskapet i Lund

Vetenskapsrådet

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3