Affiliation:
1. Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
2. Departamento de Morfologia Universidade Federal de Minas Gerais Belo Horizonte Brazil
3. Department of Physiology Temerty Faculty of Medicine, University of Toronto, Toronto Ontario Canada
4. Instituto do Cérebro Universidade Federal do Rio Grande do Norte Natal Brazil
5. Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
Abstract
AbstractMaternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient‐sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU‐ZIKVPE243) or High (5 × 107 PFU‐ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal–placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho‐eIF2α. There were no differences in fetal–placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose‐6‐phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium‐coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex‐dependent differences in the hexosamine biosynthesis pathway (HBP) and O‐GlcNAcylation in ZIKV‐infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV‐induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Ministério da Ciência, Tecnologia, Inovações e Comunicações
Bill and Melinda Gates Foundation