Glutathione safeguards TET‐dependent DNA demethylation and is critical for the acquisition of totipotency and pluripotency during preimplantation development

Author:

Liu Juan12,Chu Meiqiang13,Zhang Jingyu1,He Jiale1,Yang Qianying1,Tao Li1,Wang Zhaochen1,Yao Fusheng1,Zhao Wei1,Ouyang Si1,Chen Lei1,Zhang Shuai1,Gao Shuai1,Tian Jianhui1,Ren Likun14,An Lei1

Affiliation:

1. State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology China Agricultural University Beijing China

2. College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal Hunan Agricultural University Changsha China

3. College of Agriculture and Forestry Science Linyi University Linyi Shandong China

4. Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics Chinese Academy of Sciences and China National Center for Bioinformation Beijing China

Abstract

AbstractDuring early development, both genome‐wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria‐related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten‐eleven‐translocation (TET)‐dependent DNA demethylation, and ascorbic acid (AsA)‐GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Universities Scientific Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3