Poly(ADP‐ribose) mediates bioenergetic defects and redox imbalance in neurons following oxygen and glucose deprivation

Author:

Hossain M. Iqbal1ORCID,Lee Jun Hee1ORCID,Gagné Jean‐Philippe23ORCID,Khan Junaid1ORCID,Poirier Guy G.23ORCID,King Peter H.4567ORCID,Dawson Valina L.89101112ORCID,Dawson Ted M.89101112ORCID,Andrabi Shaida A.14ORCID

Affiliation:

1. Department of Pharmacology and Toxicology University of Alabama at Birmingham Birmingham Alabama USA

2. Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine Université Laval Québec City Quebec Canada

3. Oncology Division Centre de Recherche du Centre Hospitalier Universitaire de Québec‐Université Laval Québec City Quebec Canada

4. Department of Neurology University of Alabama at Birmingham Birmingham Alabama USA

5. Birmingham Veterans Affairs Medical Center Birmingham Alabama USA

6. Center for Neurodegeneration and Experimental Therapeutics The University of Alabama at Birmingham Birmingham Alabama USA

7. Cell, Developmental, and Integrative Biology The University of Alabama at Birmingham Birmingham Alabama USA

8. Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA

9. Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA

10. Department of Physiology Johns Hopkins University School of Medicine Baltimore Maryland USA

11. Solomon H. Snyder Department of Neuroscience Johns Hopkins University School of Medicine Baltimore Maryland USA

12. Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine Baltimore Maryland USA

Abstract

AbstractPARP‐1 over‐activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP‐1 over‐activation can bind hexokinase‐1 (HK‐1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK‐1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose‐6‐phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK‐1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR‐mediated inhibition of HK‐1 results in bioenergetics defects and redox imbalance is not known. We used oxygen–glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP‐1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP‐1 and adenoviral‐mediated overexpression of wild‐type HK‐1 (wtHK‐1) and PAR‐binding mutant HK‐1 (pbmHK‐1). Our data show that PAR inhibition or overexpression of HK‐1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK‐1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.

Funder

National Institute of Neurological Disorders and Stroke

U.S. Department of Veterans Affairs

National Institute on Aging

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3