Grape seed proanthocyanidin improves intestinal inflammation in canine through regulating gut microbiota and bile acid compositions

Author:

Zhang Mingrui1ORCID,Mo Ruixia1ORCID,Wang Haotian1ORCID,Liu Tianyi1ORCID,Zhang Gang1ORCID,Wu Yi1ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology China Agricultural University Beijing People's Republic of China

Abstract

AbstractAlthough certain progress has been made in treating canine inflammatory bowel disease (IBD), a large proportion of dogs have a poor prognosis and may develop resistance and side effects. Therefore, it is of great significance to prevent or alleviate canine IBD through nutritional intervention. Plant polyphenol can interact with intestinal bacteria and has important prospects in the intestinal health improvement. This study evaluated the effect of grape seed proanthocyanidin (GSP), a plant‐derived natural polyphenol, on Labrador Retrievers with mild IBD. In Experiment 1 of this study, GSP alleviated persistent intestinal inflammation in canines by improving inflammatory indexes and reducing intestinal permeability. Moreover, GSP treatment increased the abundance of bacteria with potential anti‐inflammatory properties and engaging bile acid metabolism, including Ruminococcaceae, Faecalibacterium, Ruminococcus_torques_group, and Lachnospiraceae_NK4A136_group. Notably, targeted metabolomic analysis identified elevated productions of fecal chenodeoxycholic acid and its microbial transformation product lithocholic acid, which might contribute to relieving canine intestinal inflammation. Further, in Experiment 2, fecal microbiota transplantation was used to determine whether gut microbiota is a potential mechanism for GSP efficacy. Dogs with mild IBD received the fecal microbiota from the group administered GSP and mirrored the improvement effects of GSP, which results verified that gut microbial alteration could be an underlying mechanism for GSP efficiency on canine IBD. Our findings highlight that the mechanism of the GSP function on canine IBD is mediated by altering gut microbial composition and improving bile acid metabolism. This study proposes a natural polyphenol‐based dietary strategy for improving canine intestinal health.

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3