Targeting sphingosine kinase 1 in p53KO thymic lymphoma

Author:

Velazquez Fabiola N.12ORCID,Stith Jeffrey L.12,Zhang Leiqing12,Allam Amira M.12,Haley John3ORCID,Obeid Lina M.12,Snider Ashley J.124ORCID,Hannun Yusuf A.12ORCID

Affiliation:

1. Department of Medicine Stony Brook University Stony Brook New York USA

2. Cancer Center Stony Brook University Stony Brook New York USA

3. Biological Mass Spectrometry Center, Stony Brook Medicine Stony Brook University Stony Brook New York USA

4. School of Nutritional Sciences and Wellness College of Agriculture and Life Sciences, and University of Arizona Cancer Center, University of Arizona Tucson Arizona USA

Abstract

AbstractSphingosine kinase 1 (SK1) is a key sphingolipid enzyme that is upregulated in several types of cancer, including lymphoma which is a heterogenous group of malignancies. Treatment for lymphoma has improved significantly by the introduction of new therapies; however, subtypes with tumor protein P53 (p53) mutations or deletion have poor prognosis, making it critical to explore new therapeutic strategies in this context. SK1 has been proposed as a therapeutic target in different types of cancer; however, the effect of targeting SK1 in cancers with p53 deletion has not been evaluated yet. Previous work from our group suggests that loss of SK1 is a key event in mediating the tumor suppressive effect of p53. Employing both genetic and pharmacological approaches to inhibit SK1 function in Trp53KO mice, we show that targeting SK1 decreases tumor growth of established p53KO thymic lymphoma. Inducible deletion of Sphk1 or its pharmacological inhibition drive increased cell death in tumors which is accompanied by selective accumulation of sphingosine levels. These results demonstrate the relevance of SK1 in the growth and maintenance of lymphoma in the absence of p53 function, positioning this enzyme as a potential therapeutic target for the treatment of tumors that lack functional p53.

Funder

American Cancer Society

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3