Hepatobiliary manganese homeostasis is dynamic in the setting of inflammation or infection in mice

Author:

Sunuwar Laxmi1ORCID,Tomar Vartika1ORCID,Wildeman Asia2,Culotta Valeria2ORCID,Melia Joanna1ORCID

Affiliation:

1. Department of Medicine, Division of Gastroenterology and Hepatology Johns Hopkins University School of Medicine Baltimore Maryland USA

2. Department of Biochemistry and Molecular Biology Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA

Abstract

AbstractManganese is a diet‐derived micronutrient that is essential for critical cellular processes like redox homeostasis, protein glycosylation, and lipid and carbohydrate metabolism. Control of Mn availability, especially at the local site of infection, is a key component of the innate immune response. Less has been elucidated about Mn homeostasis at the systemic level. In this work, we demonstrate that systemic Mn homeostasis is dynamic in response to inflammation and infection in mice. This phenomenon is evidenced in male and female mice, mice of two genetic backgrounds (C57BL/6 and BALB/c), in multiple models of acute (dextran sodium sulfate‐induced) and chronic (enterotoxigenic Bacteroides fragilis) colitis, and systemic infection with Candida albicans. When mice were fed a standard corn‐based chow with excess Mn (100 ppm), liver Mn decreased and biliary Mn increased threefold in response to infection or colitis. Liver iron, copper, and zinc were unchanged. When dietary Mn was restricted to minimally adequate amounts (10 ppm), baseline hepatic Mn levels decreased by approximately 60% in the liver, and upon induction of colitis, liver Mn did not decrease further, however, biliary Mn still increased 20‐fold. In response to acute colitis, hepatic Slc39a8 mRNA (gene encoding the Mn importer, Zip8) and Slc30a10 mRNA (gene encoding the Mn exporter, Znt10) are decreased. Zip8 protein is decreased. Inflammation/infection‐associated dynamic Mn homeostasis may represent a novel host immune/inflammatory response that reorganizes systemic Mn availability through differential expression of key Mn transporters with down‐regulation of Zip8.

Funder

National Institute on Aging

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3