DOCK3 regulates normal skeletal muscle regeneration and glucose metabolism

Author:

Samani Adrienne1ORCID,Karuppasamy Muthukumar1ORCID,English Katherine G.1ORCID,Siler Colin A.1ORCID,Wang Yimin1ORCID,Widrick Jeffrey J.23ORCID,Alexander Matthew S.14567ORCID

Affiliation:

1. Division of Neurology, Department of Pediatrics University of Alabama at Birmingham and Children's of Alabama Birmingham Alabama USA

2. Division of Genetics and Genomics Boston Children's Hospital Boston Massachusetts USA

3. Department of Pediatrics Harvard Medical School Boston Massachusetts USA

4. UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama USA

5. Department of Genetics University of Alabama at Birmingham Birmingham Alabama USA

6. UAB Civitan International Research Center (CIRC) University of Alabama at Birmingham Birmingham Alabama USA

7. UAB Center for Neurodegeneration and Experimental Therapeutics (CNET) Birmingham Alabama USA

Abstract

AbstractDOCK (dedicator of cytokinesis) is an 11‐member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin‐deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C‐terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3