Bile acids differentially regulate longitudinal smooth muscle contractility in everted mouse ileum

Author:

Dike Peace N.1,Soni Krishnakant G.1,Chang Diana S.1,Preidis Geoffrey A.1ORCID

Affiliation:

1. Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston Texas USA

Abstract

AbstractBile acids regulate gastrointestinal motility by mechanisms that are poorly understood. Standard isolated tissue bath assays might not recapitulate in vivo physiology if contractile responses to certain bile acids require direct application to the intestinal mucosa. We sought to determine the feasibility of quantifying longitudinal smooth muscle contractile responses to bile acids from intact segments of everted mouse ileum. Ileum from adult female C57BL/6J mice was isolated, gently everted over a notched metal rod, and mounted in tissue baths. Individual bile acids and agonists of bile acid receptors were added to the baths, and longitudinal smooth muscle contractile responses were quantified by isometric force transduction. Ursodeoxycholic acid robustly increased contractile responses in a dose‐dependent manner. Deoxycholic acid stimulated contractility at low doses but inhibited contractility at high doses. Chenodeoxycholic acid, glycocholic acid, and lithocholic acid did not alter contractility. The dose‐dependent increase in contractility resulting from the application of ursodeoxycholic acid was recapitulated by INT‐777, an agonist of the Takeda G protein‐coupled receptor 5 (TGR5), and by cevimeline, a muscarinic acetylcholine receptor agonist. Agonists to the nuclear receptors farnesoid X receptor, glucocorticoid receptor, pregnane X receptor, vitamin D receptor, and to the plasma membrane epidermal growth factor receptor did not modify baseline contractile patterns. These results demonstrate that gentle eversion of intact mouse ileum facilitates the quantification of longitudinal smooth muscle contractile responses to individual bile acids. Prokinetic effects of ursodeoxycholic acid and low‐dose deoxycholic acid are replicated by agonists to TGR5 and muscarinic acetylcholine receptors.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3