Effect of dietary inulin in the gut microbiota of whiteleg shrimp Penaeus vannamei

Author:

Escamilla-Montes RuthORCID,Barraza AarónORCID,Luna-González AntonioORCID,Angulo CarlosORCID,Fierro-Coronado Jesús ArturoORCID,Diarte-Plata GenaroORCID,Flores-Miranda Ma. del CarmenORCID

Abstract

The effect of dietary inulin on the intestinal bacterial communities of Penaeus vannamei by 16S metagenomic analysis was assessed. PCR amplified the V3 region of the bacterial 16S rDNA. Sequencing reads were generated using the 2×150 (300 cycles) for the base-read length chemistry of the Illumina MiniSeq platform. The software Shaman and MicrobiomeAnalyst were used to analyze the sequences. The phylum Proteobacteria and the genus Vibrio were among the most abundant taxonomic ranks for control and inulin treatment. The relative abundance of the phylum Bacteroidetes and genus Ruegeria was lower in inulin treatment concerning the control condition. Alpha and beta indices did not show significant differences between inulin treatment and control conditions. For all samples, most of the bacterial organisms showed the presence of carbohydrate and amino acid metabolism-related genes, and to a lesser extent, of energy, lipid, and cofactors and vitamin metabolism-related genes. The principal metabolic functions were glycine, serine, threonine, glyoxylate and dicarboxylate, purine, pyrimidine, pyruvate, and quorum sensing. The interaction network analysis showed fewer interactions in the inulin treatment concerning control condition. Proteobacteria, Bacteroidetes, Vibrio, and Ruegeria predominated in all samples, and inulin did not change the net microbial diversity in the intestine of P. vannamei. Streptomyces, Roseobacter, and Ruegeria showed negative interactions with Vibrio, suggesting their use as probiotics. This study sheds light on the inulin supplement on the essential role of microbiota in the shrimp.

Publisher

Pontificia Universidad Catolica de Valparaiso

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3