Optical characterization of the deep-waters of the Gulf of Mexico by in situ PAR during summer

Author:

Coria-Monter ErikORCID,Gracia AdolfoORCID,Salas de León David AlbertoORCID,Monreal-Gómez María AdelaORCID,Durán-Campos ElizabethORCID

Abstract

Phytoplankton is a sentinel group of organisms of climate change due to their capacity to respond to multiple stressors, so studies documenting the optimal optical conditions within the water column affecting their growth and production are imperative. As a contribution to this topic, this study report selected optical properties in deep-waters of the Gulf of Mexico by in situ measurements during summertime. A multidisciplinary research cruise was carried during August/September of 2018. A CTD instrument configured with underwater quantum and fluorescence sensors were used to acquire data of temperature, conductivity, depth, photosynthetically active radiation (PAR), and fluorescence of chlorophyll-a, which were used to determine selected optical coefficients, including the light extinction (k), the compensation light intensity (Ec), the compensation depth (Zc), the critical depth (Zcr), and the incident irradiance (E0). The Brunt-Väisälä frequency calculated from CTD data was used as a magnitude indicator of the water column stratification. The results showed a pycnocline located between 23 and 68 m depth, and favorable conditions for phytoplankton production with high values of E0 reaching 1523.4 μmol m-2 s-1, Ec values ranging from 3 to 8 μmol m-2 s-1, values of Zcr greater than Zc and maximum records of k values of 0.06. Based on multivariate statistical techniques, two zones were clearly defined. These results represent the first observational report on the optical properties in the deep region of the Gulf of Mexico. Studies on the ideal optical conditions for carrying out phytoplankton photosynthesis and their possible seasonal and interannual variability are essential to understand the processes that support the phytoplankton production, especially in regions that are characterized by their high biodiversity.

Publisher

Pontificia Universidad Catolica de Valparaiso

Subject

Aquatic Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3