Optimierung der Prozesse im Retoureneingang: E-Commerce Case Study für den B2C-Bereich

Author:

Stevenson Anthony BoydORCID,Rieck JuliaORCID

Abstract

ZusammenfassungDie Anzahl der Bestellungen im B2C-E-Commerce nimmt stetig zu und so auch die Anzahl der Retouren (vgl. Asdecker et al. 2021, S. 606). Bei einigen Online-Shops wurde dieses Wachstum durch die Corona-Pandemie begünstigt, was dazu führte, dass die logistischen Prozesse dem starken Anstieg der Bestellungen und Retouren nicht mehr gewachsen sind. Vor allem kleine Unternehmen mit nicht-digitalisierten Prozessen haben Schwierigkeiten, sich diesen Herausforderungen zu stellen und effizient und wirtschaftlich zu arbeiten. In einer Case Study wird das Retourenlager eines kooperierenden B2C-Onlineshops für Möbel und Wohnaccessoires analysiert und im Hinblick auf den Prozess des Retoureneingangs und der -bearbeitung optimiert. In einem ersten Schritt werden mittels Frequent Itemset Mining häufig auftretende Retouren-Charakteristika identifiziert. Aufgrund der gewonnenen Erkenntnisse werden Klassen gebildet, in die eintreffende Retouren eingeordnet werden. Die Lagermitarbeitenden werden bei dieser Vorsortierung durch einen implementierten Prototyp unterstützt, der eingehende Retouren anhand der Daten aus dem ERP-System gezielt sortiert. Durch die entsprechende Abarbeitung der Retouren ergibt sich eine deutliche Verbesserung der Prozesse gegenüber der aktuell umgesetzten FIFO-Abarbeitung.

Funder

Universität Hildesheim

Publisher

Springer Fachmedien Wiesbaden GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Recommendation Algorithm for E-Commerce Personalized Information Based on B2C Data Model Analysis;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Trust Network Model of Genetic Algorithm in E-commerce Simulation Teaching Simulation;Lecture Notes on Data Engineering and Communications Technologies;2024

3. Digital transformation in an incoming returns department: classification model for presorting returns packages;HMD Praxis der Wirtschaftsinformatik;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3