Abstract
AbstractOn the occasion of Sir Roger Penrose’s 2020 Nobel Prize in Physics, we review the singularity theorems of General Relativity, as well as their recent extension to Lorentzian metrics of low regularity. The latter is motivated by the quest to explore the nature of the singularities predicted by the classical theorems. Aiming at the more mathematically minded reader, we give a pedagogical introduction to the classical theorems with an emphasis on the analytical side of the arguments. We especially concentrate on focusing results for causal geodesics under appropriate geometric and initial conditions, in the smooth and in the low regularity case. The latter comprise the main technical advance that leads to the proofs of $C^{1}$
C
1
-singularity theorems via a regularisation approach that allows to deal with the distributional curvature. We close with an overview on related lines of research and a future outlook.
Publisher
Springer Fachmedien Wiesbaden GmbH
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献