Abstract
AbstractThis is an account on the theory of formal power series developed entirely without any analytic machinery. Combining ideas from various authors we are able to prove Newton’s binomial theorem, Jacobi’s triple product, the Rogers–Ramanujan identities and many other prominent results. We apply these methods to derive several combinatorial theorems including Ramanujan’s partition congruences, generating functions of Stirling numbers and Jacobi’s four-square theorem. We further discuss formal Laurent series and multivariate power series and end with a proof of MacMahon’s master theorem.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Fachmedien Wiesbaden GmbH
Reference46 articles.
1. Ahlgren, S.: Distribution of the partition function modulo composite integers $M$. Math. Ann. 318, 795–803 (2000)
2. Andrews, G.E.: A simple proof of Jacobi’s triple product identity. Proc. Am. Math. Soc. 16, 333–334 (1965)
3. IMA Vol. Math. Appl.;G.E. Andrews,1989
4. Andrews, G.E.: The Theory of Partitions, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998)
5. Andrews, G.E., Eriksson, K.: Integer Partitions. Cambridge University Press, Cambridge (2004)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献