Broken stitch detection method for sewing operation using CNN feature map and image processing technique .

Author:

İNAN Timur1ORCID,SAHI Samah Noaman Sahi1ORCID

Affiliation:

1. ALTINBAS UNIVERSITY

Abstract

Quality in industrial processes has become increasingly important and cost reduction and process optimization are becoming increasingly necessary Quality control brings increased production and even increased profits for a process. It can be said, then, that it is the most important metric when it comes to production. It is extremely difficult to have a 100% defect-free manufacturing process. One of the industrial processes that has received such attention regarding defects is the weaving process. The present work will make a global study on Machine Learning techniques and also on Wavelets. This study may serve as a basis for future academic work. The application built in the present work will also serve as an example of how a computer vision system can vary from the classifier algorithm used to the feature extraction technique, which in this case, will use the Wavelet Transform. In this work we Survey the state of the art in methods of recognizing defects in fabrics. We will also Create the database, as well as the set of images to be used. Extract information from the image with the Wavelet Transform. Test different classification algorithms in order to find the best answer for this problem. Improve the performance of the classifier algorithms through the CNN algorithm. Validate the system using the k-fold cross validation technique.

Funder

altinbas university

Publisher

Altinbas University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3