Abstract
This work proposes a modified Salp Swarm Optimization Algorithm (SSA) for addressing a multi-source power state's Load Frequency Control (LFC). A controller parameter tuning of the SSA method and its application to the LFC of a multi-source power system with several power generating sources. Derive to the controller parameters, a single area telecommunications device that permits two power system with integrated controlles according to each unit is considered first, and the SSA approach is used. The tunned SSA algorithm is used to optimize the integral (I), proportional integral (PI), and proportional integral derivative (PID) parameters. The research is expanded to include a multi-area multi-source power system, as well as an HVDC link is proposed for connectivity of two regions in addition to the current AC point of intersection. This same tunned SSA method is used to improve the parameters of the Integral (I), Proportional Integral (PI), and Proportional - integral - derivative Derivative (PID). Consequently, the suggested system is shown to be resilient and unaffected by changes of the loading situation, system parameters, or SLP size.
Reference20 articles.
1. Kundur P. Power system stability and control. New York: Mc-Graw Hill; 1994.
2. Elgerd OI. Electric energy systems theory an introduction. New Delhi: Tata McGraw-Hill; 1983.
3. Hassan B. Robust power system frequency control. New York: Springer; 2009.
4. Mohanty, B., Panda, S., & Hota, P. K. (2014). Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International journal of electrical power & energy systems, 54, 77-85.
5. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in engineering software, 114, 163-191.