A GRAPHENE-BASED MONOPOLE MICROSTRIP ANTENNA WITH TUNEABLE BANDGAP FOR UWB IMPLEMENTATIONS

Author:

AL-ASADİ Mustafa1ORCID,KARAN Oğuz2ORCID

Affiliation:

1. Altinbas University

2. ALTINBAŞ ÜNİVERSİTESİ

Abstract

Monopole Microstrip Antennas (M-MSAs) are widely used because of their price, ease of manufacturing, and compact size, making them ideal for portable applications. Nowadays, Ultrawide Band (UWB) technology, used in wireless applications, relies on this antenna. The UWB frequency range is 3.1 to 10.6 GHz, allowing low-power wireless applications such as wireless music, personal localization, radio frequency recognition, radar, and HD video dissemination. However, this frequency band's broadness increases interference. This contribution research formulates simulates, and optimises a modified small-square M-MSA that meets UWB technology's huge bandwidth requirements. A square radiated patch, a dielectric material with a thickness of 1 mm and 4.7 relative permittivity, a partly ground plane printed on the patch's face, and a coplanar waveguide feed make up the M-MSA design. The M-MSA design is modified to reduce the patch's bottom corners and change its proportions to enable compatibility with the UWB complete band. A U-shaped aperture on the patch should be etched to produce a bandgap in UWB frequencies, reducing interference. Filling the aperture with graphene allows bandgap tunability. The graphene's bandgap dissipates with DC voltage, but without biassing, its high impedance restricts aperture current flow. The bandgap's effect is seen at 3.87-4.85 GHz. After simulation and tweaking, gain and efficiency improved significantly. The bandgap region, which was chosen to reduce interference from military fixed communications, mobile communications, unmanned aerial vehicles, short-range radio links, satellite communications, and the low band of 5G, also exhibits a significant increase in attenuation and gain degradation.

Publisher

Altinbas University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3