Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity

Author:

A. Odilov Bobir1ORCID,Madraimov Askariy1ORCID,Y. Yusupov Otabek2ORCID,R. Karimov Nodir1ORCID,Alimova Rakhima1ORCID,Z. Yakhshieva Zukhra3ORCID,A Akhunov Sherzod4ORCID

Affiliation:

1. Tashkent State University of Oriental Studies

2. Uzbekistan State University of World Languages

3. Jizzakh State Pedagogical University named after Abdullah Kadiriy

4. Tashkent State Agrarian University

Abstract

The decline in water conditions contributes to the crisis in clean water biodiversity. The interactions between water conditions indicators and the correlations among these variables and taxonomic groupings are intricate in their impact on biodiversity. However, since there are just a few kinds of Internet of Things (IoT) that are accessible to purchase, many chemical and biological measurements still need laboratory studies. The newest progress in Deep Learning and the IoT allows for the use of this method in the real-time surveillance of water quality, therefore contributing to preserving biodiversity. This paper presents a thorough examination of the scientific literature about the water quality factors that have a significant influence on the variety of freshwater ecosystems. It selected the ten most crucial water quality criteria. The connections between the quantifiable and valuable aspects of the IoT are assessed using a Generalized Regression-based Neural Networks (G-RNN) framework and a multi-variational polynomial regression framework. These models depend on historical data from the monitoring of water quality. The projected findings in an urbanized river were validated using a combination of traditional field water testing, in-lab studies, and the created IoT-depend water condition management system. The G-RNN effectively differentiates abnormal increases in variables from typical scenarios. The assessment coefficients for the system for degree 8 are as follows: 0.87, 0.73, 0.89, and 0.79 for N-O3-N, BO-D5, P-O4, and N-H3-N. The suggested methods and prototypes were verified against laboratory findings to assess their efficacy and effectiveness. The general efficacy was deemed suitable, with most forecasting mistakes smaller than 0.3 mg/L. This validation offers valuable insights into IoT methods' usage in pollutants released observation and additional water quality regulating usage, specifically for freshwater biodiversity preservation.

Publisher

Iskenderun Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3