Abstract
This paper aims to obtain a new flexible bivariate generalized family of distributions based on FGM copula, which is called bivariate FGM Weibull-G family. Some of its statistical properties are studied as marginal distributions, product moments, and moment generating functions. Some dependence measures as Kendall’s tau and median regression model are discussed. After introducing the general class, four special sub models of the new family are introduced by taking the baseline distributions as Pareto, inverted Topp-Leone, exponential, and Rayleigh distributions. Maximum likelihood and Bayesian approaches are used to estimate the model unknown parameters. Further, percentile bootstrap confidence interval and bootstrap-t confidence interval are estimated for the model’s parameters. A Monte-Carlo simulation study is carried out of the maximum likelihood and Bayesian estimators. Finally, we illustrate the importance of the proposed bivariate family using two real data sets in medical field.
Publisher
International Academic Press
Subject
Artificial Intelligence,Control and Optimization,Statistics, Probability and Uncertainty,Computer Vision and Pattern Recognition,Information Systems,Statistics and Probability,Signal Processing
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献