Variational Bayesian Inference for Exponentiated Weibull Right Censored Survival Data

Author:

Abubakar Jibril,Abdullah Mohd Asrul Affendi,Olaniran Oyebayo Ridwan

Abstract

The exponential, Weibull, log-logistic and lognormal distributions represent the class of light and heavy-tailed distributions that are often used in modelling time-to-event data. The exponential distribution is often applied if the hazard is constant, while the log-logistic and lognormal distributions are mainly used for modelling unimodal hazard functions. The Weibull distribution is on the other hand well-known for modelling monotonic hazard rates. Recently, in practice, survival data often exhibit both monotone and non-monotone hazards. This gap has necessitated the introduction of Exponentiated Weibull Distribution (EWD) that can accommodate both monotonic and non-monotonic hazard functions. It also has the strength of adapting unimodal functions with bathtub shape. Estimating the parameter of EWD distribution poses another problem as the flexibility calls for the introduction of an additional parameter. Parameter estimation using the maximum likelihood approach has no closed-form solution, and thus, approximation techniques such as Newton-Raphson is often used. Therefore, in this paper, we introduce another estimation technique called Variational Bayesian (VB) approach. We considered the case of the accelerated failure time (AFT) regression model with covariates. The AFT model was developed using two comparative studies based on real-life and simulated data sets. The results from the experiments reveal that the Variational Bayesian (VB) approach is better than the competing Metropolis-Hasting Algorithm and the reference maximum likelihood estimates.

Publisher

International Academic Press

Subject

Artificial Intelligence,Control and Optimization,Statistics, Probability and Uncertainty,Computer Vision and Pattern Recognition,Information Systems,Statistics and Probability,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3