GRAPHEN-PHENYL-NH2 AS NANOCARRIER: A DENSITY FUNCTIONAL THEORY STUDY

Author:

Mahani Nosrat,Mostaghni Fatemeh,Shafiekhani Homa

Abstract

Recently, graphene and modified graphene as one of the most suitable and the most important carbon nanomaterials have been introduced for drug delivery. In this paper, we have studied the binding characteristics of the EDC-NHS cross-linking process of graphene-phenyl-NH2 and 5-aminolevulinic acid (ALA) drug in both gas and solvent phases by density functional theory calculations. For describing binding properties and reaction nature between graphene-ghenyl-NH2 and ALA drug, quantum molecular descriptors, topological analysis, natural bond orbital analysis, analysis of the bond order, the density of states, and analysis bond length was investigated in solvent and gas phases. Due to the results, the complex of the graphene-phenyl-NH2 @ALA turns to absorb more electrons in water solvent than gas phase. Furthermore, the binding of graphene-phenyl-NH2 and ALA is mainly based on covalent interactions, and bond order of graphene-phenyl-NH2 @ALA complex is one in solvent and gas phases. The praphene-phenylNH2 @ALA complex has displayed a meaningful improvement of electronic and structural properties. Therefore, it represented that praphene-phenyl-NH2 being combined with the ALA drug is appropriate for use in drug delivery.

Publisher

Sociedade Brasileira de Quimica (SBQ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3