Author:
Chen Ziran,Zhang Yujin,He Zhanrong,Li Yuan,Xi Meihao,Yu Wenhao
Abstract
Based on density functional theory, quantum chemical calculations of the charge-transport rates were performed for five disc-shaped coronene derivatives with varying numbers of fused thiophene rings, using different basis sets 6-31+G(d) and 6-311++G(d,p), hybrid functionals (B3LYP, M06-2X, CAM-B3LYP, WB97XD, M08-HX), and a dispersion-corrected hybrid functional (M06-2X+D3). Our results indicate that increasing the basis set and adding diffusion and polarisation functions had little effect on the molecular reorganisation energy, charge-transport matrix element t, and charge carrier mobility μ. The charge carrier mobility calculated using B3LYP were relatively large, whereas the results calculated using CAM-B3LYP and WB97XD were similar. Among the five coronene derivatives, molecule b with one thiophene ring could be candidates for a n-type organic semiconductor, and molecule c with two thiophene rings can be designed as a p-type semiconductor.
Publisher
Sociedade Brasileira de Quimica (SBQ)