A NOVEL FLUORESCENCE SENSOR FOR THE DETECTION OF CHLORIDE ION IN ARTIFICIAL SWEAT AND ENVIRONMENTAL WATER WITH NITROGEN-DOPED GRAPHENE QUANTUM DOTS

Author:

Fan XuemeiORCID,Wang Shumin,Li Zhejian,Liu Ping,Wang Yimeng,Sun Qiangqiang,Yu Lingmin,Fan Xinhui

Abstract

A new fluorescent detection route for chloride ion was designed with Nitrogen-doped graphene quantum dots (N-GQDs), which were prepared by a traditional hydrothermal method with citric acid as carbon source and urea as nitrogen source. The prepared N-GQDs solution was light yellow, and the freeze-dried solid was black. It emitted blue light under ultraviolet light. Meanwhile, The N-GQDs were characterized by TEM, XRD, UV-Vis and fluorescence, the results indicated that the N-GQDs had good dispersibility, photostability and excitation independent emission fluorescence. After addition of Ag+ solution, Ag+ combined to the surface functional groups of N-GQDs, resulting in an obvious quenching of the fluorescence intensity of N-GQDs. Nevertheless, the fluorescence intensity recovered significantly with the addition of Cl- to the N-GQDs/Ag+ system, this was because of AgCl was formed due to the “soft hard acid base principle”. The change of fluorescence intensity had a linear response to the chloride ion concentration in the range of 8.5-300 μmol L-1, with a detection limit (LOD) of 0.1 μmol L-1. To authenticate the application, the proposed method has been successfully used for quantitative analysis of chloride ion in real samples, including artificial sweat and environmental water.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3