SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED GROUP CONTROLLED PYRENE DERIVATIVES WITH RADICAL CATIONS

Author:

Li ShunjieORCID,Chen Jian

Abstract

Two novel alkyl thiophene-modified pyrene derivatives (1)-(2) were created and synthesized using palladium-catalyzed Stille coupling processes and Friedel-Crafts reaction of pyrene. The polycyclic aromatic groups of the thiophene-modified pyrene were oxidized with Ag[Al(OC(CF3)3)4] to provide the insensitive radical cations 1•+-2•+ based on the alkyl thiophene-modified pyrene derivatives. Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), UV-Vis spectroscopy, and density functional theory (DFT) calculations, were used to investigate their structures and properties. The pyrene moieties were the primary location of the electron spin distribution, with a little overflow onto the outer thiophene moieties. Due to the different substituent groups, free radicals 1•+-2•+ exhibit some different properties. Compound 1•+ is the most extensive thiophene-modified pyrene radical cation that has been reported. These species are anticipated to have wide-ranging potential in the areas of optoelectronic materials and semiconductors.

Publisher

Sociedade Brasileira de Quimica (SBQ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3