Optimized Synthesis of Molecularly Imprinted Hybrid Polymer by Factorial Design for Selective Caffeine Extraction in Surface Water

Author:

Casarin Fabiana,Dourado Camila,Sousa Luana,Grassi MarcoORCID,Dias AnaORCID

Abstract

A hybrid imprinted polymer (HMIP) was synthetized via sol-gel technique in aqueous solution for caffeine separation from environmental waters samples. The optimal conditions of synthesis were stablished by application of a 23 full factorial experimental design with three factors: ratio of functional monomer and cross-linker reagent, and acid or basic catalyst (HCl or NH4OH). The HMIP obtained with the factorial designs was 22.5 times more selective for caffeine than control polymer, with an adsorption mechanism of pseudo-second order with two sorption sites. The maximum equilibrium adsorption capacity was 1.91 mg g-1 that was maintained until ten cycles of reuse, indicating their excellent stability. The material was 21 times more selective for caffeine than for its analogous molecules (theophylline and theobromine). HMIP was applied in solid phase extraction (SPE) procedure and caffeine extraction of surface water had good recoveries (93.0%).These results demonstrated that the factorial experimental design resulted in an efficient and selective sorbent for caffeine with a reduction of number of synthesis and problems of trial‑and‑error protocol as well as reagents consumption decrease.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3