Agro-Industrial Waste Valorization: Transformation of Starch from Mango Kernel into Biocompatible, Thermoresponsive and High Swelling Nanogels

Author:

de Oliveira Marlizia,Madruga LisztORCID,de Lima Bruna,Villetti Marcos,de Souza Filho Men,Kipper Matt,Marques Nívia,Balaban RosangelaORCID

Abstract

Mango industry processing disposes 40-60% of this fruit as residues, such as peels and kernels. The exploration of bioproducts from these industrial rejects can reduce environmental impact besides of producing high value-added materials. In this scenario, carboxymethyl starch nanoparticles were produced from mango (Mangifera indica L.) kernel starch. These nanoparticles were then decorated with thermoresponsive chains of the amino terminated poly(N-isopropylacrylamide) (PNIPAM‑NH2), with the intention of evaluating their applicability in the biomedical area. Elemental analysis, Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy confirmed successful grafting of PNIPAM-NH2 onto the carboxymethyl starch backbone. Scanning electron microscopy (SEM) images and dynamic light scattering (DLS) data showed sizes of 100 and 112 nm in the dry state and of 744 and 598 nm in the hydrated state, when the grafting degree (GD) was of 6 and 14.3%, respectively. The degree of swelling was of 41,100 and 15,100% for GD of 6 and 14.3% respectively, suggesting that the nanogels are suitable for drug incorporation. The toxicity of the nanogels to human adipose-derived stem cells (ADSCs) and red blood cells (RBCs) was evaluated by lactate dehydrogenase (LDH), alamarBlue and hemolysis assays. Both nanogels were non-cytotoxic and non-hemolytic, suggesting the suitability of these biomaterials for cell- and blood-contacting applications.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3