Temperature Dependent Emission Properties of ReI Tricarbonyl Complexes with Dipyrido-Quinoxaline and Phenazine Ligands

Author:

Ramos Cristiane,Prado Fernando,Carmo Marcos Eduardo,Farias Giliandro,Souza Bernardo,Machado Antonio EduardoORCID,Patrocinio Antonio OtavioORCID

Abstract

In this work, the emission properties of fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2’,3’-h]quinoxaline (dpq) and dipyrido[3,2-a:2’3’-c]phenazine (dppz); py = pyridine were investigated in different temperatures, ranging from 80 to 300 K, and in different solvent mixtures and in polymethyl methacrylate. The changes observed in the emission quantum yields were rationalized based on a two-level excited state model, in which the nonemissive upper state is thermally populated and decays faster than the lowest lying emissive state. fac‑[Re(CO)3(dpq)(py)]+ is a metal-to-ligand charge transfer (MLCT) emitter as the complex with phen but exhibits smaller emission quantum yields, being more sensitive to the solvent. This behavior was rationalized by quantum-mechanical calculations including the spin-orbit coupling matrix elements, revealing that intersystem crossing from the lowest singlet excited state in fac- [Re(CO)3(dpq)(py)]+ likely occurs to triplet states lying at higher energies. Similar behavior were observed for fac-[Re(CO)3(dppz)(py)]+, although the later exhibits intraligand emission that are strongly quenched in fluid solutions by low-lying MLCT states. The fundamental studies carried out here provide new insights on the excited state dynamics of ReI complexes with dipyridoquinoxaline and phenazine ligands and can contribute for further advances on their application as luminescent probes.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3