Computation-Guided Support to Experiments by the Exploration of Reaction Mechanisms: Organic Synthesis, Natural Products and Environmental Issues

Author:

de Andrade KarineORCID,Fajardo José RenatoORCID,Leal CaioORCID,Carneiro José WalkimarORCID,Fiorot RodolfoORCID

Abstract

Humankind has experienced a remarkable development since it began to design and optimize chemical reactions to achieve valuable compounds. The key to accomplish these tasks is the proper understanding of how chemical transformations occur at a molecular level, that is, their reaction mechanisms. Based on a suitable mechanistic proposal, experimentalists choose a given chemical protocol to optimize experimental conditions, design new synthetic routes, and circumvent competing reactions. In this context, computational chemistry has become a valuable ally for mechanistic elucidation. We present herein a review of complementary collaborations between experimentalists and theoretical chemists to rationalize processes at the molecular level, focusing mainly on the fields of organic synthesis, natural product chemistry, and systems with environmental interest. Throughout this review, we highlight the ability of computational evaluations to provide answers to questions raised from experiments in a clear and direct way, indicating to experimentalists alternative paths to help them solve their problems.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3