Dispersive Liquid Phase Microextraction (DLPME) as a Strategy for CdII Separation and Determination in High-Salinity Produced Waters by Graphite Furnace Atomic Absorption Spectrometry

Author:

Robaina Nicolle,Cruz Graziela,Cassella RicardoORCID

Abstract

In this study, we propose a microextraction method for the determination of CdII in produced waters. The process is based on the conversion of CdII ions into a hydrophobic diethyldithiocarbamate (DDTC) complex with its subsequent dispersive liquid phase microextraction (DLPME) from the aqueous medium with chloroform. The organic phase was then diluted with ethanol and Cd absorbance was measured by graphite furnace atomic absorption spectrometry (GF AAS). The experimental conditions related to the DLPME process were investigated, and the best microextraction conditions were achieved at pH = 6.0 (acetate buffer), 7.5 × 10-6 mol L-1 of DDTC, and when using 200 µL of chloroform as the extracting solvent. No dispersing solvent was needed, which allowed the recovery of approximately 140 µL of chloroform extract. Pyrolysis and atomization temperatures of the GF AAS program were determined through the construction of the respective curves. The estimated limits of detection (LOD) and quantification (LOQ) were 5 and 17 ng L-1, respectively, whereas the enrichment factor for the method was 17. Six samples of seawater and five samples of produced waters with salinities between 30 and 270‰ were analyzed as well as two certified reference materials of saline waters.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3