Niobium Oxide Photocatalytically Oxidizes Ammonia in Water at Ambient Conditions

Author:

Elias Welman,Clark Chelsea,Heck Kimberly,Arredondo Jacob,Wang Bo,Toro Andras,Kürti László,Wong MichaelORCID

Abstract

Ammonia contamination in water is a significant environmental issue since it is toxic and leads to eutrophication. Photocatalysis has been investigated as a strategy for ammonia degradation but can potentially form toxic nitrite (NO2 – ) and nitrate (NO3 – ) byproducts. This work reports on the ability of niobium oxide (Nb2O5) to photocatalytically oxidize aqueous-phase ammonia (NH3). Whereas as-synthesized Nb2O5 showed little catalytic activity (< 1% NH3 conversion after 6 h of UV-C irradiation, at room temperature and atmospheric pressure, and under O2 headspace), Nb2O5 treated in basic solution (OH-Nb2O5) was able to photocatalytically degrade NH3 at ca. 9% conversion after six hours, with ca. 70% selectivity to the desired N2, with a first-order rate constant of ca. 12 times higher than the as synthesize catalyst (1.6 × 10–3 min–1 vs. 2.0 × 10–2 min–1). Raman spectroscopic analysis indicated the presence of terminal Nb=O species after base treatment of Nb2O5, implicating them as catalytically active sites. These results underscore how a simple structural modification can significantly affect photocatalytic activity for aqueous ammonia oxidation.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3