Redox-Activated NO Release in Monolayer Regime

Author:

Ferreira Millena,Pereira Walysson,Dibo Vitória,Abreu Dieric,Lopes Luiz,Diógenes IzauraORCID,Paulo TércioORCID

Abstract

Development of platforms capable of guarantee a controlled NO release at a specific target is highly promising yet challenging. Herein, we present the synthesis and characterization of cis-[Ru(bpy)2(1,4-dt)(NO)](PF6)3 (RuNO), where 1,4-dt = 1,4-dithiane and bpy = 2,2’-bipyridine, which was adsorbed on gold through the sulfur atom of 1,4-dt. This complex was thoroughly characterized by electrochemistry, nuclear magnetic resonance, and vibrational and electronic spectroscopies whose assignments were corroborated by theoretical data. The formation of the selfassembled monolayer (SAM) of RuNO on gold was monitored by surface plasmon resonance giving a coverage density of 2.1 × 10–10 mol cm–2. Taking advantage of the NO lability upon reduction, electrochemical scanning microscopy (SECM) was used to both trigger the NO release from the SAM of RuNO on the gold substrate and detection at the SECM tip. Accordingly, upon reduction, the generated NO0 species was detected at the SECM TIP, where it was oxidized back to NO+.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3