Identification of Disease Type of Tobacco Leaves Based on Near Infrared Spectroscopy and Convolutional Neural Network

Author:

Ying LiangORCID,Kun Ma,Xinyu Zhang,Qifu Yang,Jiaquan Wu,Shuangyan YangORCID

Abstract

It is important to identify the types of tobacco diseases accurately and take effective control measures in time to improve the efficiency of tobacco planting. In this paper, a hand-held nearinfrared spectrometer was used to collect the spectral data of different types of tobacco disease samples. The training models were established via convolutional neural network algorithm. Meanwhile, the traditional classification algorithms support vector machine and back propagation neural network were also compared. The results showed that the prediction accuracy of convolutional neural network algorithm was the highest and the overall performance of the model was the best. The rapid detection method based on a hand-held near-infrared spectrometer and convolutional neural network algorithm could identify tobacco leaf disease species efficiently, non-destructively, quickly and accurately, which provided a new technical reference for tobacco leaf disease species detection and identification.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3