Abstract
In this work, we describe a sustainable alternative to recover iron from two iron ore tailings (IOT) using hydrogen reduction at relatively low temperatures followed by magnetic separation. X-ray powder diffraction (XRD), inductively coupled plasma (ICP), atomic absorption (AA), Mössbauer, scanning electron microscopy (SEM/EDS), Raman and thermogravimetry (TG) analyses indicated that the Fe oxide present in the IOTs (sandy tailing (ST) and mud tailings (MT)), can be reduced with H2 at 500 ºC to produce α-Fe. Upon magnetic separation the mud tailing produced a 77 wt.% magnetic fraction increasing the Fe content from 19.2 to ca. 56 wt.% of Fe. On the other hand, the sandy tailing resulted in a 15 wt.% magnetic fraction increasing the Fe content from 19.2 to 70 wt.%. These results indicate that up to 86% of iron can be recovered from the IOT wastes already in the metallic form which can be very interesting for the steel industry.
Publisher
Sociedade Brasileira de Quimica (SBQ)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献