Iron Cobaltite (FeCo2O4) Nanocatalysts for Water-Oxidation: Effects of Annealing Temperature on Catalytic Properties

Author:

Magalhães RiverORCID,Bargiela Pascal,da Rocha Maria da Graça,Gil Eric,de Souza Aparecido

Abstract

The development of efficient, stable, and non-precious metal water oxidation catalysts (WOCs) is a matter of importance for sustainable energy research. In this work, iron cobaltite (FeCo2O4) nanoparticles were prepared by the coprecipitation method, and we present the effect of heat treatment (250, 350, 450, 650 and 900 °C) on the catalytic properties. Catalytic activity tests of FeCo2O4 nanocatalysts were performed in the presence of ammonium cerium(IV) nitrate (CAN), and the formation of oxygen was followed using a Clark-type oxygen electrode. The samples were characterized by infrared (IR), thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their surface areas were determined by the Brunauer, Emmett, and Teller (BET) method. Fourier transform infrared (FTIR) data confirm a metal-oxygen bond at the octahedral and tetrahedral sites. XRDs data were characteristic of spinel-like cubic materials. The XPS results confirmed the presence of trivalent and divalent cobalt and iron ions in the samples and showed that the non-heated sample has a greater amount of cobalt on the nanoparticles’ surface than those heated to 900 °C. The surface area decreased from 92.00 m2 g-1 for the material that was unannealed to 2.00 m2 g-1 for the sample annealed at 900 °C. The unannealed nanomaterials showed an oxygen production of 790 mmol s−1 g−1. This was 790 times greater than the oxygen production from nanomaterials heated to 900 °C. Although the surface structure of nanomaterials is unclear, the amount of surface cobalt appears to have implications for catalytic activity. Optimization of superficial cobalt content may be key to improving catalytic activity.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3