Evaluation of an Industrial Absorption Process for Carbon Capture Using K2CO3 Promoted by Boric Acid

Author:

de Vasconcelos Suênia,Carneiro Lucas,Brito Romildo,Brito KarolineORCID

Abstract

Hot potassium carbonate (HPC) process aims to remove the CO2 present on synthesis gas. This removal is done in an absorption process, where takes place the reaction of CO2 with a K2CO3 solution. This reaction is slow and H3BO3 can be used to increase the rate of reaction. The rate-based model is the most suitable way to model the process. This approach uses different correlations to calculate important mass transfer and hydraulic parameters, such as: mass transfer coefficient, interfacial area, and liquid holdup. This paper aims to evaluate the performance of many correlations to represent the HPC process. An automatic procedure was developed to test a high number of equations, using MATLAB and Aspen Plus software. The best set of correlations was found after a comparison with industrial data. Correlations with errors less than 10% for the entire evaluated operating conditions were calculated for mass transfer coefficient and the interfacial area, as well as for liquid holdup.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3